
Part3 - Tree&Heap

Part3 - Tree&Heap
Tree
Several Concepts
Binary Tree

Definition
Properties
Different Types of Binary Tree
Numbering Nodes In a Perfect Binary Tree
Representing Binary Tree

Binary Tree Traversal
Depth-First Traversal
Level-Order Traversal
Rebuild the Tree from Traversal Sequences

Method to Rebuild
Exercise

Priority Queue and Heap
Priority Queue
Min Heap

Definition
Properties
Binary Heap Implementation as an Array
Operations
Initialize Heap
Application

Tree

Several Concepts

root: node at the top.

af://n612
af://n616
af://n617

parent-child relationship.

leaf: node without children.

subtree

sibling

path:

sequence of nodes such that next node in the sequence is a child of the previous.

a -> c -> g. path length 2.

path length can be 0. one node to itself.

ancestor / descendant: If there exists a path from a node A to a node B, then A is an ancestor
of B and B is a descendant of A.

depth / level: length of the path from the root to the node.

height of node: length of the longest path from the node to a leaf.

height of tree / depth of tree: height of the root.

number of levels of a tree: height of tree + 1.

degree of node: number of children.

degree of tree: the maximum degree of a node in tree.

Binary Tree

Definition

at most two children

or empty tree

Properties

or

af://n655
af://n656
af://n662

Different Types of Binary Tree

proper: every node has 0 or 2 children

complete:

every level except the lowest is fully populated

the lowest level is populated from left to right

perfect: fully populated;

Numbering Nodes In a Perfect Binary Tree

Representing Binary Tree

array

linked structure

struct node {

 Item item;

 node *left;

 node *right;

};

af://n668
af://n681
af://n683
af://n691

Binary Tree Traversal

Depth-First Traversal

pre-order: node - left subtree - right subtree

in-order: left subtree - node - right subtree

post-order: left subtree - right subtree - node

Level-Order Traversal

top from bottom

left from right

queue

enqueue the root into an empty queue

while the queue is not empty, dequeue a node from the front of the queue

visit the node

enqueue left child (if exists) and right child (if exists)

Rebuild the Tree from Traversal Sequences

We can determine one tree from the in-order traversal and any of the pre-order and post-
order traversal.

and we CANNOT do it without in-order traversal. Because the pre-order and post-order
traversal give only the parent-child relationship. Only the in-order traversal gives the
information about left and right subtrees.

several different trees can have exactly the SAME pre-order and post-order traversal.

Method to Rebuild

find the root of the tree or subtree from the post-order or in-order traversal

divide the left and right subtree in the in-order traversal

repeat the previous two steps until the whole tree is determined

Exercise

Given pre-order traversal sequence ABDECFG and in-order traversal sequence DBEAFCG, rebuild
the binary tree.

af://n691
af://n692
af://n700
af://n718
af://n726
af://n734

Priority Queue and Heap

Priority Queue

isEmpty

size

enqueue: put an item into the priority queue

dequeueMin: remove element with min key

getMin: get item with min key

implement with STL (C++ built-in libraries)

priority_queue<int, vector<int>, greater<int> > my_heap; // min_heap

my_heap.empty();

my_heap.top(); // getMin

my_heap.pop(); // dequeueMin

my_heap.push(); // insert

af://n737
af://n738

Min Heap

Definition

binary heap (complete binary tree)

a tree where for any node , the key of is smaller than or equal to (≤) the keys of any
descendants of .

Properties

the key of the root of any subtree is always the smallest among all the keys in that subtree.

the keys of nodes across subtrees have no required relationship

Binary Heap Implementation as an Array

Don't worry about the start index.

Operations

percolating-up;

af://n750
af://n751
af://n757
af://n764
af://n767

percolating-down;

enqueue;

decrease key;

dequeueMin;

void minHeap::enqueue(Item newItem) {

 heap[++size] = newItem;

 percolateUp(size);

}

Initialize Heap

insert each entry one by one;

initialize from array / heapify;

put all the items into a complete binary tree (array)

starting at the rightmost array position that has a child, percolate down all nodes in
reverse level-order

Q: Can we initialize the array with percolateUp instead of percolateDown?

A: Yes. But the time complexity is , and we should start from the top instead of the
bottom. The analysis is similar to the one in Prof. Ban's slides.

Application

sorting

median maintenance

Item minHeap::dequeueMin() {

 swap(heap[1], heap[size--]);

 percolateDown(1);

 return heap[size+1];

}

for (i = size / 2; i >= 1; i--){

 percolateDown(i);

}

af://n788
af://n826

	Part3 - Tree&Heap
	Tree
	Several Concepts
	Binary Tree
	Definition
	Properties
	Different Types of Binary Tree
	Numbering Nodes In a Perfect Binary Tree
	Representing Binary Tree

	Binary Tree Traversal
	Depth-First Traversal
	Level-Order Traversal
	Rebuild the Tree from Traversal Sequences
	Method to Rebuild
	Exercise

	Priority Queue and Heap
	Priority Queue
	Min Heap
	Definition
	Properties
	Binary Heap Implementation as an Array
	Operations
	Initialize Heap
	Application

