
Non-Comparison Sort
Counting Sort

Count the number of each number.

Time complexity:

Bucket Sort
Distribute the records by keys into appropriate buckets

Sort each bucket by comparison sort.

Time complexity:

Assume items are uniformly distributed. Totally elements, range , into buckets. Then
each bucket contains elements. Then totally time complexity:

.

Radix Sort
Procedure:

From the least significant bit to the most siginificant bit, do bucket sort. In round, sort in each
bucket by the least bits.

Actually, in each round, you just need to scan through the result array in the last round, and
directly insert into the corresponding bucket, then the elements in each bucket is already sorted
according to the least bits.

Correctness: Induction.

Time complexity:

af://n0
af://n2
af://n11
af://n17
af://n19
af://n27

Linear Time Selection
The selection problem
Find smallest element in the array.

Randomized selection algorithm
Basic idea comes from quick sort.

We only care about the part containing the target element.

Recursion !

Time complexity:

Deterministic selection algorithm
In worst case, time complexity degenerates to .

A pivot close to median is better.

Use median of median to find a approximate median as pivot.

 here is not exactly the median of original sequence.

To calculate the time complexity, we need to find the possible range of our pivot.

af://n27
af://n28
af://n30
af://n36

Hash
A dictionary that can insert and find key in .

conllision
Separate Chaining

Open addressing

Linear Probing :

Quadratic Probing :

Double Hashing :

If table size is not a prime number, sometimes we might never find an empty slot.

Load factor

remove
separate chaining: easy

open addressing: lazy deletion

Rehash
Amortized time

Bloom filter
False negative and false positive

af://n46
af://n49
af://n60
af://n62
af://n65
af://n96
af://n68

Binary search tree
Definition: for each node, its key is greater than all nodes in left subtree and less than all nodes in
right subtree.

Operations:

search / insert / remove / predecessor / successor / rank search

all

range search :

search:

insert:

remove x:

Leaf : directly remove.

Degree-one : directly connect x's son with x's father.

af://n68

Degree-two : find the predecessor / successor in the subtree. Replace by , remove ,
since only have one son, it's simple.

predecessor of x

left subtree of is not empty : same as remove

empty : keep find father until get a key less than . (Which means find a left father).

successor of x

right subtree of is not empty : same as remove

empty : keep find father until get a key larger than . (Which means find a right father).

rank search

Consider find elements in a subtree.

Record the size of each subtree.

Compare the with the left size

<= leftsize , recursion in left subtree

= leftsize + 1, return root

otherwise, recursion in right subtree

range search

As long as the search range cover all or part of one subtree, recursion (brute-force to find all
possible elements).

Add root into result if it's within the range.

	Non-Comparison Sort
	Counting Sort
	Bucket Sort
	Time complexity:

	Radix Sort

	Linear Time Selection
	The selection problem
	Randomized selection algorithm
	Deterministic selection algorithm

	Hash
	conllision
	Load factor
	remove
	Rehash
	Bloom filter

	Binary search tree

