
k-d tree
insert
search
remove
find minimum
range search 
nearest neighbor search
Time complexity

Trie / Prefix Tree
search
insert
remove
Time complexity

Balanced Search Tree
AVL Tree

Balance condition
Re-Balance the Tree via Rotation

Right Rotation
Left Rotation
Balance Factor

After Insertion
LL rotation
RR rotation
LR rotation
RL rotation
Summary

After Removal
Time complexity 

Red-Black Tree
Properties

Black height
Implication of the Rules

Height Guarantee
Insertion

Violation at Leaf 
Violation at Internal Nodes
Runtime Complexity

Deletion
Deleting a red node
Deleting a black node
What's wrong??

Compared Against AVL Tree
Time complexity 

af://n2


k-d tree  

binary search tree

each level represents different dimension

insert  

search  
similarly to insert

 

void insert(node *&root, Item item, int dim) { 

    if(root == NULL) {

        root = new node(item); 

    return;

 }

 if(item.key == root->item.key) // equal in all dimensions

     return; 

 if(item.key[dim] < root->item.key[dim]) // < left subtree

     insert(root->left, item, (dim+1)%numDim); 

 else  // >= right subtree

     insert(root->right, item, (dim+1)%numDim);

}

node *search(node *root, Key k, int dim) {

    if(root == NULL) return NULL; 

    if(k == root->item.key) 

        return root; 

    if(k[dim] < root->item.key[dim]) 

        return search(root->left, k, (dim+1)%numDim);

    else

        return search(root->right, k, (dim+1)%numDim);

}

af://n2
af://n9
af://n11
af://n15


remove  
leaf: directly remove it

non-leaf: 

If the node  to be removed has right subtree, find the node  in right subtree with the 
minimum value of the current dimension

Replace the value of  with the value of 

Recurse on  until a leaf is reached. Then remove the leaf.

Else, find the node  in left subtree with the maximum value of the current dimension. 
Then replace and recurse. However, this only works if there is only exact ONE maximum.

af://n15


find minimum  

range search  

searchRange[][2]  holds two values (min, max) per dimension which define a hyper-cube

treeRange[][2]  holds lower bound and upper bound per dimension for the tree rooted at 
root.

node *findMin(node *root, int dimCmp, int dim) {

// dimCmp: dimension for comparison

// dim: current dimension

    if(!root) return NULL;

    node *min = findMin(root->left, dimCmp, (dim+1)%numDim);

    if(dimCmp != dim) {

    // Then minimum might be in right subtree if the dimension doesn't match

        rightMin = findMin(root->right, dimCmp, (dim+1)%numDim);

        min = minNode(min, rightMin, dimCmp);

        // compare leftmin and rightmin

    }

    return minNode(min, root, dimCmp);

    // compare the minimum in subtrees and root, since root might not be in 

comparison dimension

}

void rangeSearch(

    node *root, 

    int dim, 

    Key searchRange[][2], 

    Key treeRange[][2],List results

)

af://n31
af://n33


nearest neighbor search  

static void nearestNeighborSearch(node* currentNode, const Point2D& queryPoint, 

int depth, Point2D& bestPoint, double& bestDist) {

        if (!currentNode) return;

        double d = distance(queryPoint, currentNode->key);

        if (d < bestDist) {

            bestDist = d;

            bestPoint = currentNode->key;

        }

        int axis = depth % 2;

        node* nextBranch = nullptr;

        node* oppositeBranch = nullptr;

        if ((axis == 0 && queryPoint.x < currentNode->key.x) || (axis == 1 && 

queryPoint.y < currentNode->key.y)) {

            nextBranch = currentNode->left_subtree;

            oppositeBranch = currentNode->right_subtree;

        } else {

            nextBranch = currentNode->right_subtree;

            oppositeBranch = currentNode->left_subtree;

        }

        // Search the side where the query point is

        nearestNeighborSearch(nextBranch, queryPoint, depth + 1, bestPoint, 

bestDist);

        // Decide whether to search the opposite side

af://n41


 and  here trigger the oppositeBranch

Time complexity  
insert:  (on average),  (worst).

search:  (on average),  (worst)

remove:  (on average),  (worst)

 is all you need.

Trie / Prefix Tree  

We can keep an array of pointers in a node, which corresponds to all possible symbols in 
the alphabet.

For example, ptr alphabet[26]  here

        if (oppositeBranch != nullptr && ((axis == 0 && abs(queryPoint.x - 

currentNode->key.x) < bestDist) || (axis == 1 && abs(queryPoint.y - currentNode-

>key.y) < bestDist))) {

            nearestNeighborSearch(oppositeBranch, queryPoint, depth + 1, 

bestPoint, bestDist);

        }

    }

af://n45
af://n54


or, a linked list of pointers to the child nodes, corresponding to a small fraction of the 
possible symbols in the alphabet.

prefix tree: Labels of edges on the path from the root to any leaf in the trie forms a prefix of a  
string in that leaf.

We add a symbol to the alphabet to indicate the end of a string. For example, use  “$” to 
indicate the end. This is important as sometimes a string may be a prefix of others. See ant  

in the figure above.

search  
Follow the search path, starting from the root.

When there is no branch, return false.

When the search leads to a leaf, further compare with the key at the leaf

insert  
Follow the search path, starting from the root.

If a new branch is needed, add it.

When the search leads to a leaf, a conflict occurs. We need to branch.

Use the next symbol in the key.

The originally-unique word must be moved to lower level

remove  
The key to be removed is always at the leaf

After deleting the key, if the parent of that key now has only one child , remove the  parent 
node and move key  one level up

af://n70
af://n78
af://n92


If key  is the only child of its new parent, repeat the above procedure again.

Time complexity  
For insert  and search :

 (worst), where  is the length of the string. 

not depend on the number of keys .

not depend on the number of keys .

For example, in the previous example, we can find the word “duck” with just  “du”.

Balanced Search Tree  
Height of a tree of  nodes = 

Balance condition can be maintained efficiently:  time to rebalance a tree.

AVL Tree  
Balance condition  

An empty tree is AVL balanced

A non-empty binary tree is AVL balanced if

Both its left and right subtrees are AVL balanced, and 

The height of left and right subtrees differ by at most 1.

Re-Balance the Tree via Rotation  

Right Rotation  

1. The right link of the left child becomes the left link of the parent.

2. Parent becomes right child of the old left child.

af://n102
af://n114
af://n120
af://n121
af://n132
af://n133


Left Rotation  

1. The left link of the right child becomes the right link of the parent.

2. Parent becomes left child of the old right child.

Balance Factor  

Rewrite the AVL tree's balance condition: for every node  in the tree .

af://n140
af://n147
af://n151


After Insertion  
The heights of all the nodes along the access path, i.e., the path from the root to that leaf must 
be recomputed and the AVL balance condition must be checked.

LL rotation  

RR rotation  

af://n151
af://n153
af://n156


LR rotation  

af://n159


RL rotation  

af://n164


Solution Situation

LL
Node  becomes unbalanced with a positive balance factor and the left
subtree of the node also has a positive balance factor.

RR
Node  becomes unbalanced with a negative balance factor and the right
subtree of the node also has a negative balance factor.

LR
Node  becomes unbalanced with a positive balance factor but the left
subtree of the node has a negative balance factor.

RL
Node  becomes unbalanced with a negative balance factor but the right
subtree of the node has a positive balance factor.

Summary  

We fix the first unbalanced node in the access path from the leaf.

When an AVL tree becomes unbalanced after an insertion, exactly one single or  double 
rotation is required to balance the tree.

The height of the tree won't change after the insertion if it triggers the rotation.

After Removal  
1. First remove node as with BST

2. Then update the balance factors of those ancestors in the access path and rebalance as 
needed. (almost the same as the operations above).

Difference from insertion: a single rotation might not completely fix all AVL imbalance 
(rebalancing may be applied to the ancestor).

af://n167
af://n189


case 1: 

case 2: 

case 3: 

Time complexity  
search: 

insert: 

delete: 

Red-Black Tree  
Properties  

a binary search tree

af://n203
af://n211
af://n212


Every node is either red or black.

Root rule: The root is black.

Red rule: Red node can only have black children.

Path rule: Every path from a node  to NULL must have the same number of black nodes 
(including  itself).

Black height  

Black height of a node  is the number of black nodes on the path from  to NULL,  including  
itself.

Implication of the Rules  

If a red node has at least one child, it must have two children and they must be black.

If a black node has only one child, that child must be a red leaf.

Height Guarantee  
Claim: every red-black tree with nodes has height  .

Proof: 

1. In a binary tree with nodes, there is a root-NULL path with at most  nodes.

2. # black nodes on that path .

3. By path rule: every root-NULL path has  black nodes.

4. By red rule: every root-NULL path has   total nodes.

Insertion  
new node is always a red leaf.

parent is black, done.

parent is red, violate the red rule. Need to fix by recoloring/rotation.

moving the violation up the tree -> the root may become red-> set root to be black

 

Following cases assume that the parent "P" is the left child. The "right case" is symmetric.

af://n224
af://n227
af://n233
af://n248


Violation at Leaf  

case 1:

case 2:

case 3:

Violation at Internal Nodes  

case 1:

af://n260
af://n273


case 2:

case 3:

final step: 

\



Runtime Complexity  

# violations .

Deletion  

Deleting a red node  

simple

Deleting a black node  

complicated

What's wrong??  

 

Compared Against AVL Tree  
Red-black tree is less balanced:

bad for search

good for insertion/deletion

Example

AVL tree for database (lots of lookups, fewer modifications)

Red-black tree for stock market transactions (lots of modifications)

Time complexity  
search: 

insert: 

delete: 

af://n290
af://n292
af://n293
af://n295
af://n297
af://n300
af://n316

	k-d tree
	insert
	search
	remove
	find minimum
	range search 
	nearest neighbor search
	Time complexity

	Trie / Prefix Tree
	search
	insert
	remove
	Time complexity

	Balanced Search Tree
	AVL Tree
	Balance condition
	Re-Balance the Tree via Rotation
	Right Rotation
	Left Rotation
	Balance Factor

	After Insertion
	LL rotation
	RR rotation
	LR rotation
	RL rotation
	Summary

	After Removal
	Time complexity 

	Red-Black Tree
	Properties
	Black height
	Implication of the Rules

	Height Guarantee
	Insertion
	Violation at Leaf 
	Violation at Internal Nodes
	Runtime Complexity

	Deletion
	Deleting a red node
	Deleting a black node
	What's wrong??

	Compared Against AVL Tree
	Time complexity 


