Final RC Part3

Fibonacci heap

Operation	Binary Heap (worst case)	Fibonacci Heap (amortized analysis)
insert	$\Theta(\log n)$	$\Theta(1)$
extractMin	$\Theta(\log n)$	$O(\log n)$
getMin	Θ(1)	Θ(1)
makeHeap	Θ(1)	$\Theta(1)$
union	$\Theta(n)$	$\Theta(1)$
decreaseKey	$\Theta(\log n)$	$\Theta(1)$

Graph

G = (V, E)nodes / vertices : $V = \{v_1, v_2, \dots v_n\}$ edges / arcs : $E = \{e_1, e_2, \dots e_m\}$ neighbor/adjacent, simple graph, complete graph (m= $\frac{n(n-1)}{2}$) Directed/Undirected graph, path, simple paths Connected, strongly connected, weakly connected

Node degree

Undirected : $\sum degree(x) = 2|E|$ Directed : $\sum in\text{-}degree(x) = \sum out\text{-}degree(x) = |E|$ source/sink

cycle

path starting and finishing at the same node

simple cycle, acyclic graph, directed acyclic graph (DAG)

Sparse graph : $|E|<<|V|^2, |E|pprox \Theta(|V|)$ Dense graph : $|E|pprox \Theta(|V|^2)$

Graph Representation

Adjacency Matrix

|V| imes |V| matrix representing a graph

Unweighted graph : $A_{ij}=1$ if there is an edge between v_i and v_j , 0 if there is no edge.

Weighted graph : A_{ij} is the weight of edge between v_i and v_j , ∞ if there is no edge.

Adjacency List

Use a link list for each node to store all nodes adjacent to this node:

Space complexity $\mathcal{O}(|E|+|V|)$

Graph Search, Topological Sorting

Def: visit every nodes exactly once.

Two common methods : BFS/DFS

Depth-First Search (DFS)

Breadth-First Search (BFS)

Time complexity : $\mathcal{O}(|V|^2)$ for adjacency matrix, $\mathcal{O}(|V|+|E|)$

Topological Sorting

Sorting the nodes (of a directed graph) in a sequence such that for each directed edge (v_i, v_j)

Notice that the topological order is **not unique** for most random **DAG** (a graph with cycle doesn't have a possible topological order)

example :

another possible order: G, A, B, D, E, C, F

Code :

Time complexity : $\mathcal{O}(|V|+|E|)$

Minimum Spanning Tree

Tree : acyclic, connected undirected graph. |E|=|V|-1 , any connected graph with N nodes and N-1 edges is a tree

Spanning Tree : Subgraph of G that have all nodes of G and is a tree.

Minimum Spanning Tree : The spanning tree with minimum sum of all edge weights

Prim's Algorithm

Basic idea : keep adding nodes to the tree greedily until T contains all N nodes.

Procedure :

- Arbitrarily pick one nodes s , $T = \{s\}, T' = V \{s\}$.
- While $T' \neq \emptyset$, set the edge e = (a, b, w) with **smallest weight** connecting nodes between T and T'. That is, $a \in T, b \in T'$.
- To get the smallest edge dynamically, just keep track of D(v) for each $v \in T'$ that D(v) means the smallest edge from T that connecting v'.
- Whenever adding a node a into T, eunumurate all adjacent nodes b and update D(b).

Code :

Kruskal's Algorithm

Shortest Path Problem

Def : Shortest path between the given nodes.

For unweighted graphs (or say all weight is 1) , we can directly use BFS.

Dijkstra's Algorithm

For more general situation, for weighted graph with non-negative edge.

Basic idea : each time, we choose the closest node to the start node, to update other's distance, obviously, this node's distance won't be updated again.

Procedure :

- Initialization : let D(s)=0 and $D(v)=\infty$ for other nodes. $T=\{s\}, T'=V-\{s\}$
- While T' is not empty, choose $u \in T'$ such that D(u) is the smallest.
- Update other adjacent node's distance like $D(v) = \min(D(v), D(u) + w(u, v))$.


```
Time complexity : \mathcal{O}(|V|^2)
```

How to optimize ? Heap ! Binary heap : $\mathcal{O}(|V| \log |V| + |E| \log |V|)$ Fibonacci heap : $\mathcal{O}(|V| \log |V| + |E|)$

Dynamic Programming

Optimization problem

characteristics of dynamic programming problems :

- Solving problem can be divided into solving subproblems
- This problem's answer can be deduced / calculated by subproblems' answer

Then different from divide and conquer, we use array (usually) or other structures to store answers and don't recalculate or resolve a same subproblem.

Save both memory and time

Some progressive examples :

① Fibonacci Sequence :

② Unique Paths

62. Unique Paths

🔒 Companies

There is a robot on an $m \times n$ grid. The robot is initially located at the **top-left corner** (i.e., grid[0][0]). The robot tries to move to the **bottom-right corner** (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.

Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the bottom-right corner.

The test cases are generated so that the answer will be less than or equal to 2×10^9 .

③ Matrix-Chain Multiplication

 \odot