
Final RC Part3
Fibonacci heap

Graph

nodes / vertices :

edges / arcs :

neighbor/adjacent, simple graph, complete graph (m=)

Directed/Undirected graph, path, simple paths

Connected, strongly connected, weakly connected

Node degree

Undirected :

Directed : - -

source/sink

af://n0
af://n2
af://n6
af://n14

cycle

path starting and finishing at the same node

simple cycle, acyclic graph, directed acyclic graph (DAG)

Sparse graph :

Dense graph :

Graph Representation

Adjacency Matrix

 matrix representing a graph

Unweighted graph : if there is an edge between and , if there is no edge.

Weighted graph : is the weight of edge between and , if there is no edge.

Adjacency List

Use a link list for each node to store all nodes adjacent to this node:

Space complexity

Graph Search, Topological Sorting
Def: visit every nodes exactly once.

Two common methods : BFS/DFS

af://n19
af://n26
af://n27
af://n31
af://n38
af://n41

Depth-First Search (DFS)

Breadth-First Search (BFS)

Time complexity : for adjacency matrix,

Topological Sorting
Sorting the nodes (of a directed graph) in a sequence such that for each directed edge

Notice that the topological order is not unique for most random DAG (a graph with cycle doesn't
have a possible topological order)

example :

another possible order:

af://n41
af://n43
af://n46

Code :

Time complexity :

Minimum Spanning Tree
Tree : acyclic, connected undirected graph. , any connected graph with
nodes and edges is a tree

Spanning Tree : Subgraph of that have all nodes of and is a tree.

Minimum Spanning Tree : The spanning tree with minimum sum of all edge weights

Prim's Algorithm
Basic idea : keep adding nodes to the tree greedily until contains all nodes.

Procedure :

Arbitrarily pick one nodes , .

While , set the edge with smallest weight connecting nodes between
and . That is, .

To get the smallest edge dynamically, just keep track of for each that
means the smallest edge from that connecting .

Whenever adding a node into , eunumurate all adjacent nodes and update .

Code :

af://n58
af://n62

Kruskal's Algorithm

Shortest Path Problem
Def : Shortest path between the given nodes.

For unweighted graphs (or say all weight is 1) , we can directly use .

Dijkstra's Algorithm
For more general situation, for weighted graph with non-negative edge.

Basic idea : each time, we choose the closest node to the start node, to update other's distance,
obviously, this node's distance won't be updated again.

Procedure :

Initialization : let and for other nodes.

While is not empty, choose such that is the smallest.

Update other adjacent node's distance like .

af://n76
af://n80
af://n83

Time complexity :

How to optimize ?

Heap !

Binary heap :

Fibonacci heap :

Dynamic Programming
Optimization problem

characteristics of dynamic programming problems :

Solving problem can be divided into solving subproblems

This problem's answer can be deduced / calculated by subproblems' answer

Then different from divide and conquer, we use array (usually) or other structures to store
answers and don't recalculate or resolve a same subproblem.

Save both memory and time

af://n103

Some progressive examples :

① Fibonacci Sequence :

② Unique Paths

③ Matrix-Chain Multiplication

	Final RC Part3
	Fibonacci heap
	Graph
	Node degree
	cycle
	Graph Representation
	Adjacency Matrix
	Adjacency List

	Graph Search, Topological Sorting
	Depth-First Search (DFS)
	Breadth-First Search (BFS)
	Topological Sorting

	Minimum Spanning Tree
	Prim's Algorithm
	Kruskal's Algorithm

	Shortest Path Problem
	Dijkstra's Algorithm

	Dynamic Programming

