RC4
Graph

G=(V,E)
nodes / vertices: V' = {v1,va,...v,}
edges/arcs: E={ej,ea,...en}

(n—1)

neighbor/adjacent, simple graph, complete graph (m="T)

Directed/Undirected graph, path, simple paths

Connected, strongly connected, weakly connected

Node degree
Undirected : > degree(z) = 2|E|
Directed : Y in-degree(x) =) out-degree(x) = |E|

source/sink

cycle
path starting and finishing at the same node

simple cycle, acyclic graph, directed acyclic graph (DAG)

Sparse graph : |E| << |V|}|E| = (V)

Dense graph: |E| =~ O(|V]?)

Graph Representation

Adjacency Matrix

|V| x |V| matrix representing a graph

Unweighted graph : A;; = 1if there is an edge between v; and v;, 0 if there is no edge.
Weighted graph : A;; is the weight of edge between v; and v; , oo if there is no edge.
Adjacency List

Use a link list for each node to store all nodes adjacent to this node:

af://n0
af://n2
af://n10
af://n15
af://n22
af://n23
af://n27

v¢$¢

W+ W

(w)—{w) MW
2]
oRol’
(4
(v) 5]

Space complexity O(|E| + |V])

R

Graph Search, Topological Sorting

Def: visit every nodes exactly once.

Two common methods : BFS/DFS

Depth-First Search (DFS)

dfs(u) {
visited[u] = ;
for(v:E[u]) if(!visited|[v])

dfs(v);

Breadth-First Search (BFS)

queue<int>q;
bfs(S) {
q.push(S); inqueue[S] =
while(!q.empty()) {
u = q.front();

for v:E[u]) if(!inqueue[v]
q.push(v) , inqueue|v] =

Time complexity : O(|V|?) for adjacency matrix, O(|V| + | E|)

af://n34
af://n37
af://n39
af://n42

Topological Sorting

Sorting the nodes (of a directed graph) in a sequence such that for each directed edge (v;, v;)

Notice that the topological order is not unique for most random DAG (a graph with cycle doesn't
have a possible topological order)

example:

A topological sorting is: A, G, D, B,E,C, F

another possible order: G, A, B, D, E,C, F
Code:

queue< >q;
vector< >order;
vectorg > TopologicalSort() {
for(X = 1; x <= n; ++x) if(!in_degree[x])
qg.push(x);
while(!q.empty()) {
u = q.front(); qg.pop();
order.push_back(u);
for v:E[u]

in_degree[v]--;
if(in_degree[v] == @)
q.push(v);

return order;

Time complexity : O(|V| + | E|)

af://n42
af://n54

Minimum Spanning Tree

Tree : acyclic, connected undirected graph. |E| = |V| — 1, any connected graph with N
nodes and N — 1 edges is a tree

Spanning Tree : Subgraph of G that have all nodes of G' and is a tree.

Minimum Spanning Tree : The spanning tree with minimum sum of all edge weights

Prim's Algorithm
Basic idea : keep adding nodes to the tree greedily until 7" contains all N nodes.

Procedure:
e Arbitrarily pick one nodes s, T' = {s},T' =V — {s}.

o WhileT' # 0, set the edge e = (a, b, w) with smallest weight connecting nodes between T
and T'. Thatis,a € T,b e T"'.

e To get the smallest edge dynamically, just keep track of D(v) for each v € T" that D(v)
means the smallest edge from 7" that connecting v’.

e Whenever adding a node a into T', eunumurate all adjacent nodes b and update D(b).

Code:
prim() {

for(1 ; 1 ; i) dis[i] = INF;
added[1]

for(:E[1]) dis[v] = w;

for(i ;1 <= n-1; ++1) {

for] = 1; J <= n; ++J
if(ladded[j] && dis[j] < dis[u]

=1

ans += dis[u];
added|{u]| = 3
for [v,w]:E[u]
dis[v] = min(dis[v] , w);
}

return ans;

Kruskal's Algorithm

af://n54
af://n58
af://n72

Shortest Path Problem

Def : Shortest path between the given nodes.

For unweighted graphs (or say all weight is 1), we can directly use BEF'S.
Dijkstra's Algorithm

For more general situation, for weighted graph with non-negative edge.

Basic idea : each time, we choose the closest node to the start node, to update other's distance,
obviously, this node's distance won't be updated again.

Procedure :
e |Initialization : let D(s) = 0 and D(v) = oo for other nodes. T = {s},T' =V — {s}
e While T is not empty, choose u € T" such that D(u) is the smallest.

e Update other adjacent node's distance like D(v) = min(D(v), D(u) + w(u,v)).

Dijkstra(S, T) {

for(1 @; 1 <= n; ++1) dis[i] = INF;
dis[S] = ©; added[S] = ;

for(v,w|:E[S]) dis[v] = w;

for(i . 1 n-1; ++i) {

for ; <= n; ++j
&& dis[j] < dis[u]

added|u| = ;
for [v,w]:E[u]
dis[v] = min(dis[v] , dis[u] + w);

return dis[T];

Time complexity : O(|V|?)

How to optimize ?

Heap !

Binary heap : O(|V|log|V| + | E|log |V])

af://n76
af://n79

Fibonacci heap : O(|V|log |V| + |E|)

Dynamic Programming

Optimization problem
characteristics of dynamic programming problems :

e Solving problem can be divided into solving subproblems

e This problem's answer can be deduced / calculated by subproblems' answer

Then different from divide and conquer, we use array (usually) or other structures to store
answers and don't recalculate or resolve a same subproblem.

Save both memory and time

Some progressive examples :

@ Fibonacci Sequence:

int fib(int n) {
if(n <= 1) return n;

return fib(n-1)+fib (n-2) ; .
: fib(5)

— T~
fib(4 fib(3
PN PN

fib(3) fib(2) fib(2) fib(1)

7N/ '\ 7N\

fio(2) fib(1) fib(1) fib(0) fib(1) fib(0)
/7 \

fib(1) fib(0) Subproblems overlap. A lot of computation
is wasted. Time complexity is Q(1.5™).

m We can also compute the Fibonacci sequence in iterative way:

int fib(int n) {
£f[0] = 0; f[1] = 1;
for(i = 2 to n)
f[i] = £f[i-1]+£f[i-2];
return f[n];

}

m Time complexity is @(n).

af://n99

@ Unique Paths

62. Unique Paths ©
3159k Pao & O
Companies

There is a robot on an m x n grid. The robot is initially located at the top-left corner (i.e, grid[0][0]). The
robot tries to move to the bottom-right corner (i.e., grid[m - 1] [n - 1]). The robot can only move either
down or right at any point in time.

Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the
bottom-right corner.

The test cases are generated so that the answer will be less than or equal to 2 * 107,

® Matrix-Chain Multiplication

	RC4
	Graph
	Node degree
	cycle
	Graph Representation
	Adjacency Matrix
	Adjacency List

	Graph Search, Topological Sorting
	Depth-First Search (DFS)
	Breadth-First Search (BFS)
	Topological Sorting

	Minimum Spanning Tree
	Prim's Algorithm
	Kruskal's Algorithm

	Shortest Path Problem
	Dijkstra's Algorithm

	Dynamic Programming

