RC4
Graph

G=(V,E)
nodes / vertices: V' = {v1,va,...v,}
edges/arcs: E={ej,ea,...en}

(n—1)

neighbor/adjacent, simple graph, complete graph (m="T)

Directed/Undirected graph, path, simple paths

Connected, strongly connected, weakly connected

Node degree
Undirected : > degree(z) = 2|E|
Directed : Y in-degree(x) = ) out-degree(x) = |E|

source/sink

cycle
path starting and finishing at the same node

simple cycle, acyclic graph, directed acyclic graph (DAG)

Sparse graph : |E| << |V|}|E| = (V)

Dense graph: |E| =~ O(|V]?)

Graph Representation

Adjacency Matrix

|V| x |V| matrix representing a graph

Unweighted graph : A;; = 1if there is an edge between v; and v;, 0 if there is no edge.
Weighted graph : A;; is the weight of edge between v; and v; , oo if there is no edge.
Adjacency List

Use a link list for each node to store all nodes adjacent to this node:
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Space complexity O(|E| + |V])
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Graph Search, Topological Sorting

Def: visit every nodes exactly once.

Two common methods : BFS/DFS

Depth-First Search (DFS)

dfs( u) {
visited[u] = ;
for( v:E[u]) if(!visited|[v])

dfs(v);

Breadth-First Search (BFS)

queue<int>q;
bfs( S) {
q.push(S); inqueue[S] =
while(!q.empty()) {
u = q.front();

for v:E[u]) if(!inqueue[v]
q.push(v) , inqueue|v] =

Time complexity : O(|V|?) for adjacency matrix, O(|V| + | E|)
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Topological Sorting

Sorting the nodes (of a directed graph) in a sequence such that for each directed edge (v;, v;)

Notice that the topological order is not unique for most random DAG ( a graph with cycle doesn't
have a possible topological order)

example:

A topological sorting is: A, G, D, B,E,C, F

another possible order: G, A, B, D, E,C, F
Code:

queue< >q;
vector< >order;
vectorg > TopologicalSort() {
for( X = 1; x <= n; ++x) if(!in_degree[x])
qg.push(x);
while(!q.empty()) {
u = q.front(); qg.pop();
order.push_back(u);
for v:E[u]

in_degree[v]--;
if( in_degree[v] == @ )
q.push(v);

return order;

Time complexity : O(|V| + | E|)
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Minimum Spanning Tree

Tree : acyclic, connected undirected graph. |E| = |V| — 1, any connected graph with N
nodes and N — 1 edges is a tree

Spanning Tree : Subgraph of G that have all nodes of G' and is a tree.

Minimum Spanning Tree : The spanning tree with minimum sum of all edge weights

Prim's Algorithm
Basic idea : keep adding nodes to the tree greedily until 7" contains all N nodes.

Procedure:
e Arbitrarily pick one nodes s, T' = {s},T' =V — {s}.

o WhileT' # 0, set the edge e = (a, b, w) with smallest weight connecting nodes between T
and T'. Thatis,a € T,b e T"'.

e To get the smallest edge dynamically, just keep track of D(v) for each v € T" that D(v)
means the smallest edge from 7" that connecting v’.

e Whenever adding a node a into T', eunumurate all adjacent nodes b and update D(b).

Code:
prim() {

for( 1 ; 1 ; i) dis[i] = INF;
added[1]

for( :E[1]) dis[v] = w;

for( i ;1 <= n-1; ++1) {

for ] = 1; J <= n; ++J
if(ladded[j] && dis[j] < dis[u]

=1

ans += dis[u];
added|{u]| = 3
for [v,w]:E[u]
dis[v] = min( dis[v] , w );
}

return ans;

Kruskal's Algorithm
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Shortest Path Problem

Def : Shortest path between the given nodes.

For unweighted graphs ( or say all weight is 1), we can directly use BEF'S.
Dijkstra's Algorithm

For more general situation, for weighted graph with non-negative edge.

Basic idea : each time, we choose the closest node to the start node, to update other's distance,
obviously, this node's distance won't be updated again.

Procedure :
e |Initialization : let D(s) = 0 and D(v) = oo for other nodes. T = {s},T' =V — {s}
e While T is not empty, choose u € T" such that D(u) is the smallest.

e Update other adjacent node's distance like D(v) = min(D(v), D(u) + w(u,v)).

Dijkstra( S, T) {

for( 1 @; 1 <= n; ++1) dis[i] = INF;
dis[S] = ©; added[S] = ;

for( v,w|:E[S]) dis[v] = w;

for( i . 1 n-1; ++i) {

for ; <= n; ++j
&& dis[j] < dis[u]

added|u| = ;
for [v,w]:E[u]
dis[v] = min(dis[v] , dis[u] + w);

return dis[T];

Time complexity : O(|V|?)

How to optimize ?

Heap !

Binary heap : O(|V|log|V| + | E|log |V])
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Fibonacci heap : O(|V|log |V| + |E|)

Dynamic Programming

Optimization problem
characteristics of dynamic programming problems :

e Solving problem can be divided into solving subproblems

e This problem's answer can be deduced / calculated by subproblems' answer

Then different from divide and conquer, we use array (usually) or other structures to store
answers and don't recalculate or resolve a same subproblem.

Save both memory and time

Some progressive examples :

@ Fibonacci Sequence:

int fib(int n) {
if(n <= 1) return n;

return fib(n-1)+fib (n-2) ; .
: fib(5)

— T~
fib(4 fib(3
PN PN

fib(3) fib(2) fib(2) fib(1)

7N/ '\ 7N\

fio(2) fib(1) fib(1) fib(0) fib(1) fib(0)
/7 \

fib(1) fib(0) Subproblems overlap. A lot of computation
is wasted. Time complexity is Q(1.5™).

m  We can also compute the Fibonacci sequence in iterative way:

int fib(int n) {
£f[0] = 0; f[1] = 1;
for(i = 2 to n)
f[i] = £f[i-1]+£f[i-2];
return f[n];

}

m Time complexity is @(n).
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@ Unique Paths

62. Unique Paths ©
3159k Pao & O
Companies

There is a robot on an m x n grid. The robot is initially located at the top-left corner (i.e, grid[0][0]). The
robot tries to move to the bottom-right corner (i.e., grid[m - 1] [n - 1] ). The robot can only move either
down or right at any point in time.

Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the
bottom-right corner.

The test cases are generated so that the answer will be less than or equal to 2 * 107,

® Matrix-Chain Multiplication
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