
ECE2810J
Data Structures and Algorithms

RC2

Topics:

• Non-comparison Sort

• Linear Time Selection

• Hashing Table



Outline

 Non-comparison Sort

o Counting Sort

o Bucket Sort

o Radix Sort

 Linear Time Selection

o Randomized selection algorithm

o Deterministic selection algorithm

 Hashing Table

o Hashing Basics

o Hash Function

o Collision Resolution

2



Counting Sort
A General Version

 A general version (allow additional data and guarantee the stability):

1. Allocate an array C[k+1]

2. Scan array A. For i=1 to N, increment C[A[i]]

3. For i=1 to k, C[i]=C[i-1]+C[i]

o C[i] now contains number of items less than or equal to i

4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement 

C[A[i]]

3



Counting Sort
Example (General, allows additional data in A)

1. Allocate an array C[k+1].

2. Scan array A. For i=1 to N, 

increment C[A[i]].

3. For i=1 to k, C[i]=

C[i-1]+C[i]

4. For i=N downto 1, put A[i] in new 

position C[A[i]] and decrement 

C[A[i]].

4

2 5 3 0 2 3 0 3

k=5

A

2 0 2 3 0 1

0 1 2 3 4 5
C

0 2 2 4 7 7

0 1 2 3 4 5
C

1 2 3 4 5 6 7 8

0 0 2 2 3 3 3 5

1 2 3 4 5 6 7 8
A



Bucket Sort

 Instead of simple integer, each key can be a complicated record, such as a real value.

 Then instead of incrementing the count of each bucket, distribute the records by 

their keys into appropriate buckets.

 Algorithm:

1. Set up an array of initially empty “buckets”.

2. Scatter: Go over the original array, putting each object in its bucket.

3. Sort each non-empty bucket by a comparison sort.

4. Gather: Visit the buckets in order and put all elements back into the original array.

5



Bucket Sort

 Example

 Time complexity

o Suppose we are sorting 𝑐𝑁 items and we divide the entire range into 𝑁 buckets.

o Assume that the items are uniformly distributed in the entire range.

o The average case time complexity is 𝑂(𝑁).

6



Radix Sort

 Radix sort sorts integers by looking at one digit at a time.

 Procedure: Given an array of integers, from the least significant bit (LSB) to 

the most significant bit (MSB), repeatedly do stable bucket sort according to 

the current bit.

 For sorting base-𝑏 numbers, bucket sort needs 𝑏 buckets.

o For example, for sorting decimal numbers, bucket sort needs 10 buckets.

7



Radix Sort
Example

 Sort 815, 906, 127, 913, 098, 632, 278.

 Bucket sort 815, 906, 127, 913, 098, 632, 278 according to the least 

significant bit:

 Bucket sort 632, 913, 815, 906, 127, 098, 278 according to the second bit.

8

0 1 2 3 4 5 6 7 8 9

815 906 127913632 098

278



Radix Sort
Example

 Bucket sort 632, 913, 815, 906, 127, 098, 278 according to the second bit.

 Bucket sort 906, 913, 815, 127, 632, 278, 098 according to the most 

significant bit.

9

632913

815

906 127 098278

0 1 2 3 4 5 6 7 8 9



Radix Sort
Example

 Bucket sort 906, 913, 815, 127, 632, 278, 098 according to the most 

significant bit.

 The final sorted order is: 098, 127, 278, 632, 815, 906, 913.

10

906

913

815127 632278098

0 1 2 3 4 5 6 7 8 9



Radix Sort

Time Complexity

 Let 𝑘 be the maximum number of digits in the keys and 𝑁
be the number of keys.

 We need to repeat bucket sort 𝑘 times.

o Time complexity for the bucket sort is 𝑂(𝑁).

 The total time complexity is 𝑂(𝑘𝑁).

11



Radix Sort

 Radix sort can be applied to sort keys that are built on positional notation.

o Positional notation: all positions uses the same set of symbols, but 

different positions have different weight.

o Decimal representation and binary representation are examples of 

positional notation.

o Strings can also be viewed as a type of positional notation. Thus, radix 

sort can be used to sort strings.

 We can also apply radix sort to sort records that contain multiple keys.

o For example, sort records (year, month, day).

12



Randomized Selection

Rselect(int A[], int n, int i) {

// find i-th smallest item of array A of size n

if(n == 1) return A[1];

Choose pivot p from A uniformly at random;

Partition A using pivot p;

Let j be the index of p;

if(j == i) return p;

if(j > i) return Rselect(1st part of A, j-1, i);

else return Rselect(2nd part of A, n-j, i-j);

}

13



Deterministic Selection Algorithm

Dselect(int A[], int n, int i) {

// find i-th smallest item of array A of size n

if(n == 1) return A[1];

Break A into groups of 5, sort each group;

C = n/5 medians;

p = Dselect(C, n/5, n/10);

Partition A using pivot p;

Let j be the index of p;

if(j == i) return p;

if(j > i) return Dselect(1st part of A, j-1, i);

else return Dselect(2nd part of A, n-j, i-j);

}

14

Choose Pivot

Same as

Rselect

The function has two recursive calls



 In deterministic selection, assume groups are made up of 9 elements instead 
of 5. Will there be more or less recursive calls to DSelect within the “finding 
the median of medians” steps?

 Fewer recursive calls.

 larger buckets -> less number of buckets

15

Deterministic Selection Algorithm



Hashing

16

“Algorithm” -> A -> … -> find it

An element -> hash function -> find it

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [4] [5] [6] [7]

(85,e)(22,a) (33,b)(3,c) (73,d)

(85,e)(22,a)(33,b)(3,c) (73,d)



What Can Go Wrong?

 Where does (35, g) go?

 Problem: The home bucket for (35, g) is already occupied!

o This is a “collision”.

17

[0] [1] [2] [3] [4] [5] [6] [7]

(85,e)(22,a)(33,b)(3,c) (73,d)



Hash Function Design Criteria

 Must compute a bucket for every key in the universe.

 Must compute the same bucket for the same key.

 Should be easy and quick to compute.

 Minimizes collision

o Spread keys out evenly in hash table

o Gold standard: completely random hashing

➢ The probability that a randomly selected key has bucket 𝑖 as its home bucket 
is 1/𝑛, 0 ≤ 𝑖 < 𝑛.

➢ Completely random hashing minimizes the likelihood of a collision when keys 
are selected at random.

➢ However, completely random hashing is infeasible due to the need to 
remember the random bucket.

18

The hardest criterion



Hash Functions

 Hash function (ℎ(𝑘𝑒𝑦)) maps key to buckets in two steps:

1. Convert key into an integer in case the key is not an integer.

o A function 𝑡(𝑘𝑒𝑦) which returns an integer value, known as hash code.

2. Compression map: Map an integer (hash code) into a home bucket.

o A function 𝑐(ℎ𝑎𝑠ℎ𝑐𝑜𝑑𝑒) which gives an integer in the range [0, 𝑛 − 1], 
where 𝑛 is the number of buckets in the table.

 In summary, ℎ(𝑘𝑒𝑦) = 𝑐(𝑡(𝑘𝑒𝑦)), which gives an index in the table.

19

Hash function criteria: Should be easy and quick to compute.



Compression Map

 Map an integer (hash code) into a home bucket.

 The most common method is by modulo arithmetic.

homeBucket = c(hashcode) = hashcode % n

where 𝑛 is the number of buckets in the hash table.

 Example: Pairs are (22,a), (33,b), (3,c), (55,d), (79,e). Hash table size is 7.

20

[0] [1] [2] [3] [4] [5] [6]

(22,a) (33,b)(3,c) (55,d)(79,e)



Hashing by Modulo

 The choice of the hash table size 𝑛 will affect the distribution 
of home buckets.

 Suppose the keys of an application are more likely to be mapped into even 
integers.

o E.g., memory address is always a multiple of 4.

 When the hash table size 𝑛 is an even number, even integers are hashed 
into even home buckets.

o E.g., n = 14: 20%14 = 6, 32%14 = 4, 8%14 = 8

 So do not use an even hash table size 𝑛.

 Ideally, choose the hash table size 𝑛 as a large prime number.

21



Collision Resolution

 Separate Chaining

 Open Addressing

o Linear Probing

o Quadratic Probing and Double Hashing

o Performance of Open Addressing

22



Separate Chaining

 Each bucket keeps a linked list of all items whose home buckets are that bucket.

 Example: Put pairs whose keys are 6, 23, 34, 28, 29, 7, 33, 30 into a hash table with 

𝑛 = 7 buckets.

o homeBucket = key % 7

o Note: we insert object at the beginning of a linked list.

23

7 28

34 6

30 23

29

33

[0]

[1]

[2]

[3]

[4]

[5]

[6]



Separate Chaining

 Value find(Key key)

o Compute k = h(key)

o Search in the linked list located at the k-th bucket with the key

➢ Check every entry

 void insert(Key key, Value value)

o Compute k = h(key)

o Search in the linked list located at the k-th bucket 

➢ If found, update its value; 

➢ Otherwise, insert pair at the beginning of the linked list in O(1) time 24



Separate Chaining

 Value remove(Key key)

o Compute k = h(key)

o Search in the linked list located at the k-th bucket

➢ If found, remove that pair

25



Open Addressing

 Reuse empty space in the hash table to hold colliding items.

 Search hash table in systematic way for an empty bucket

o Idea: use a sequence of hash functions h0, h1, h2, . . . to probe the 

hash table until we find an empty slot.

➢ I.e., we probe the hash table buckets mapped by h0(key), 

h1(key), …, in sequence, until we find an empty slot.

➢ Generally, we could define hi(x) = h(x) + f(i)

26



Open Addressing Methods

 Linear probing:
hi(x) = (h(x) + i) % n

 Quadratic probing: 
hi(x) = (h(x) + i

2) % n

 Double hashing: 
hi(x) = (h(x) + i*g(x)) % n

27
n is the hash table size



Linear Probing

hi(key) = (h(key)+i) % n

 Apply hash function h0, h1, …, in sequence until we find an empty slot.

o This is equivalent to doing a linear search from h(key) until we find an 

empty slot.

 Example: Hash table size n = 9, h(key) = key%9

o Thus hi(key) = (key%9+i)%9

o Suppose we insert 1, 5, 11, 2, 17, 21, 31 in sequence

28[0] [1] [2] [3] [4] [5] [6] [7] [8]

1 511 How about 2?



Linear Probing
Example

 Hash table size n = 9, h(key) = key%9

o Thus hi(key) = (key%9+i)%9

o Suppose we insert 1, 5, 11, 2, 17, 21, 31 in sequence.

o h0(2) = 2. Not empty!

o So we try h1(2) = 3. It is empty, so we insert there!

o h0(21) = 3. Not empty!

o h1(21) = 4. It is empty, so we insert there!

o h0(31) = 4. Not empty!

o h1(31) = 5. Not empty!

o h2(31) = 6. It is empty, so we insert there!
29

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1 511 2 1721 31



Linear Probing
find()

o With linear probing hi(key) = (key%9+i)%9

o How will you search an item with key = 31?

o How will you search an item with key = 10?

 Procedure: probe in the buckets given by h0(key), h1(key), …, in sequence until 

o we find the key,

o or we find an empty slot, which means the key is not found.

30

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1 511 2 1721 31



Linear Probing
remove()

o With linear probing hi(key) = (key%9+i)%9

o How will you remove an item with key = 11?

o If we just find 11 and delete it, will this work?

31

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1 511 2 1721 31

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1 52 1721 31

What is the result for searching key = 2 

with the above hash table?



Linear Probing
remove()

 After deleting 11, we need to rehash the following “cluster” to fill the 

vacated bucket.

 However, we cannot move an item beyond its actual hash position. In this 

example, 5 cannot be moved ahead.

32

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1 52 1721 31

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1 52 1721 31

cluster



Linear Probing
Alternative implementation of remove()

 Lazy deletion: we mark deleted entry as “deleted”

o “deleted” is not the same as “empty”

o Now each bucket has three states: 

➢ “occupied”, “empty”, and “deleted”

 We can overwrite the “deleted” entry when inserting

 When we search, we will keep looking if we encounter a “deleted” entry

33

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1 511 2 1721 31del



Quadratic Probing

hi(key) = (h(key)+i
2) % n

 It is less likely to form large clusters.

 Example: Hash table size n = 7, h(key) = key%7

o Thus hi(key) = (key%7+i
2)%7

o Suppose we insert 9, 16, 11, 2 in sequence.

o h0(16) = 2. Not empty!

o h1(16) = 3. It is empty, so we insert there.

o h0(2) = 2. Not empty!

o h1(2) = 3. Not empty!

o h2(2) = 6. It is empty, so we insert there.
34

[0] [1] [2] [3] [4] [5] [6]

9 16 11 2



Problem of Quadratic Probing

 However, may never find an empty slot even if the table isn’t full!

o Highly filled table

 Luckily, if the load factor 𝐿 ≤ 0.5, guaranteed to find an empty slot

o Table size must be a prime number!

o Definition: given a hash table with 𝑛 buckets that stores 𝑚 objects, 

its load factor is

𝐿 =
𝑚

𝑛
=

#objects in hash table

#buckets in hash table

35



More on Load Factor of Hash Table

 Question: which collision resolution strategy is feasible for load factor 

larger than 1?

o Answer: separate chaining.

o Note: for open addressing, we require 𝐿 ≤ 1.

 Claim: 𝐿 = 𝑂(1) is a necessary condition for operations to run in 

constant time.

36



More on Load Factor of Hash Table

 Question: A hash table of size 100 has 40 empty elements and 25 

deleted elements. What is its load factor?

 Answer: 0.35

 𝐿 =
100−40−25

100
=

35

100
= 0.35

37



Double Hashing

hi(x) = (h(x) + i*g(x)) % n

 Uses 2 distinct hash functions.

 Increment differently depending on the key.

o If h(x) = 13, g(x) = 17, the probe sequence is 13, 30, 47, 64, …

o If h(x) = 19, g(x) = 7, the probe sequence is 19, 26, 33, 40, …

o For linear and quadratic probing, the incremental probing patterns 

are the same for all the keys.

38



Double Hashing
Example

 Hash table size n = 7, h(key) = key%7, g(key) = (5-key)%5

o Thus hi(key) = (key%7+(5-key)%5*i)%7

o Suppose we insert 9, 16, 11, 2 in sequence.

o h0(16) = 2. Not empty!

o h1(16) = 6. It is empty, so we insert there.

o h0(2) = 2. Not empty!

o h1(2) = 5. It is empty, so we insert there.
39

[0] [1] [2] [3] [4] [5] [6]

9 1611 2



Expected Number of Comparisons

 Chaining (assume completely random hash)

o First check whether empty or not, count as 1 operation

o Average length is L in each bucket

➢ U(L) = 1+L

➢ S(L) = 1+L/2 (average search of filled bucket is half expected length)

40



Which Strategy to Use?

 Both separate chaining and open addressing are used in real applications

 Some basic guidelines:

o If resizing is frequent, better to use open addressing

o If need removing items, better to use separate chaining

➢ remove() is tricky in open addressing

o In mission critical application, prototype both and compare

41



Exercises

 Suppose you have a hash table of size M = 7 that uses the hash function H(n) = n 
and the compression function C(n) = n mod M. Quadratic probing is used to 
resolve collisions. You enter the following six elements into this hash table in the 
following order: {24, 11, 17, 21, 10, 4}. No resizing is done. After all collisions are 
resolved, which index of the hash table remains empty (the first index is 0)?

 Answer: 2

42

17 21 24 11 10 4

0 1 2 3 4 5 6



Exercises
 How many possbile inserting sequences for the hash table using quadratic 

probing with hash function ℎ𝑖 𝑥 = 𝑥 + 𝑖2 mod 7 would lead to a hash table 

like this?

 Answer: 9

43

0 1 2 3 4 5 6

3 9 2 4 11

9 2 4 11 3

3 11

4 2 11 3

3 11

11 2 3

4 9 2 11 3

3 11

11 2 3

11 9 2 3



Exercises

 https://leetcode.cn/problems/two-sum/

 https://leetcode.cn/problems/longest-consecutive-sequence/

44

https://leetcode.cn/problems/two-sum/
https://leetcode.cn/problems/longest-consecutive-sequence/

	幻灯片 1: ECE2810J Data Structures and Algorithms
	幻灯片 2: Outline
	幻灯片 3: Counting Sort A General Version
	幻灯片 4: Counting Sort Example (General, allows additional data in A)
	幻灯片 5: Bucket Sort
	幻灯片 6: Bucket Sort
	幻灯片 7: Radix Sort
	幻灯片 8: Radix Sort Example
	幻灯片 9: Radix Sort Example
	幻灯片 10: Radix Sort Example
	幻灯片 11: Radix Sort Time Complexity
	幻灯片 12: Radix Sort
	幻灯片 13: Randomized Selection
	幻灯片 14: Deterministic Selection Algorithm
	幻灯片 15: Deterministic Selection Algorithm
	幻灯片 16: Hashing
	幻灯片 17: What Can Go Wrong?
	幻灯片 18: Hash Function Design Criteria
	幻灯片 19: Hash Functions
	幻灯片 20: Compression Map
	幻灯片 21: Hashing by Modulo
	幻灯片 22: Collision Resolution
	幻灯片 23: Separate Chaining
	幻灯片 24: Separate Chaining
	幻灯片 25: Separate Chaining
	幻灯片 26: Open Addressing
	幻灯片 27: Open Addressing Methods
	幻灯片 28: Linear Probing
	幻灯片 29: Linear Probing Example
	幻灯片 30: Linear Probing find()
	幻灯片 31: Linear Probing remove()
	幻灯片 32: Linear Probing remove()
	幻灯片 33: Linear Probing Alternative implementation of remove()
	幻灯片 34: Quadratic Probing
	幻灯片 35: Problem of Quadratic Probing
	幻灯片 36: More on Load Factor of Hash Table
	幻灯片 37: More on Load Factor of Hash Table
	幻灯片 38: Double Hashing
	幻灯片 39: Double Hashing Example
	幻灯片 40: Expected Number of Comparisons
	幻灯片 41: Which Strategy to Use?
	幻灯片 42: Exercises
	幻灯片 43: Exercises
	幻灯片 44: Exercises

