
ECE2810J
Data Structures and Algorithms

RC2

Topics:

• Non-comparison Sort

• Linear Time Selection

• Hashing Table



Outline

 Non-comparison Sort

o Counting Sort

o Bucket Sort

o Radix Sort

 Linear Time Selection

o Randomized selection algorithm

o Deterministic selection algorithm

 Hashing Table

o Hashing Basics

o Hash Function

o Collision Resolution

2



Counting Sort
A General Version

 A general version (allow additional data and guarantee the stability):

1. Allocate an array C[k+1]

2. Scan array A. For i=1 to N, increment C[A[i]]

3. For i=1 to k, C[i]=C[i-1]+C[i]

o C[i] now contains number of items less than or equal to i

4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement 

C[A[i]]

3



Counting Sort
Example (General, allows additional data in A)

1. Allocate an array C[k+1].

2. Scan array A. For i=1 to N, 

increment C[A[i]].

3. For i=1 to k, C[i]=

C[i-1]+C[i]

4. For i=N downto 1, put A[i] in new 

position C[A[i]] and decrement 

C[A[i]].

4

2 5 3 0 2 3 0 3

k=5

A

2 0 2 3 0 1

0 1 2 3 4 5
C

0 2 2 4 7 7

0 1 2 3 4 5
C

1 2 3 4 5 6 7 8

0 0 2 2 3 3 3 5

1 2 3 4 5 6 7 8
A



Bucket Sort

 Instead of simple integer, each key can be a complicated record, such as a real value.

 Then instead of incrementing the count of each bucket, distribute the records by 

their keys into appropriate buckets.

 Algorithm:

1. Set up an array of initially empty “buckets”.

2. Scatter: Go over the original array, putting each object in its bucket.

3. Sort each non-empty bucket by a comparison sort.

4. Gather: Visit the buckets in order and put all elements back into the original array.

5



Bucket Sort

 Example

 Time complexity

o Suppose we are sorting 𝑐𝑁 items and we divide the entire range into 𝑁 buckets.

o Assume that the items are uniformly distributed in the entire range.

o The average case time complexity is 𝑂(𝑁).

6



Radix Sort

 Radix sort sorts integers by looking at one digit at a time.

 Procedure: Given an array of integers, from the least significant bit (LSB) to 

the most significant bit (MSB), repeatedly do stable bucket sort according to 

the current bit.

 For sorting base-𝑏 numbers, bucket sort needs 𝑏 buckets.

o For example, for sorting decimal numbers, bucket sort needs 10 buckets.

7



Radix Sort
Example

 Sort 815, 906, 127, 913, 098, 632, 278.

 Bucket sort 815, 906, 127, 913, 098, 632, 278 according to the least 

significant bit:

 Bucket sort 632, 913, 815, 906, 127, 098, 278 according to the second bit.

8

0 1 2 3 4 5 6 7 8 9

815 906 127913632 098

278



Radix Sort
Example

 Bucket sort 632, 913, 815, 906, 127, 098, 278 according to the second bit.

 Bucket sort 906, 913, 815, 127, 632, 278, 098 according to the most 

significant bit.

9

632913

815

906 127 098278

0 1 2 3 4 5 6 7 8 9



Radix Sort
Example

 Bucket sort 906, 913, 815, 127, 632, 278, 098 according to the most 

significant bit.

 The final sorted order is: 098, 127, 278, 632, 815, 906, 913.

10

906

913

815127 632278098

0 1 2 3 4 5 6 7 8 9



Radix Sort

Time Complexity

 Let 𝑘 be the maximum number of digits in the keys and 𝑁
be the number of keys.

 We need to repeat bucket sort 𝑘 times.

o Time complexity for the bucket sort is 𝑂(𝑁).

 The total time complexity is 𝑂(𝑘𝑁).

11



Radix Sort

 Radix sort can be applied to sort keys that are built on positional notation.

o Positional notation: all positions uses the same set of symbols, but 

different positions have different weight.

o Decimal representation and binary representation are examples of 

positional notation.

o Strings can also be viewed as a type of positional notation. Thus, radix 

sort can be used to sort strings.

 We can also apply radix sort to sort records that contain multiple keys.

o For example, sort records (year, month, day).

12



Randomized Selection

Rselect(int A[], int n, int i) {

// find i-th smallest item of array A of size n

if(n == 1) return A[1];

Choose pivot p from A uniformly at random;

Partition A using pivot p;

Let j be the index of p;

if(j == i) return p;

if(j > i) return Rselect(1st part of A, j-1, i);

else return Rselect(2nd part of A, n-j, i-j);

}

13



Deterministic Selection Algorithm

Dselect(int A[], int n, int i) {

// find i-th smallest item of array A of size n

if(n == 1) return A[1];

Break A into groups of 5, sort each group;

C = n/5 medians;

p = Dselect(C, n/5, n/10);

Partition A using pivot p;

Let j be the index of p;

if(j == i) return p;

if(j > i) return Dselect(1st part of A, j-1, i);

else return Dselect(2nd part of A, n-j, i-j);

}

14

Choose Pivot

Same as

Rselect

The function has two recursive calls



 In deterministic selection, assume groups are made up of 9 elements instead 
of 5. Will there be more or less recursive calls to DSelect within the “finding 
the median of medians” steps?

 Fewer recursive calls.

 larger buckets -> less number of buckets

15

Deterministic Selection Algorithm



Hashing

16

“Algorithm” -> A -> … -> find it

An element -> hash function -> find it

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [4] [5] [6] [7]

(85,e)(22,a) (33,b)(3,c) (73,d)

(85,e)(22,a)(33,b)(3,c) (73,d)



What Can Go Wrong?

 Where does (35, g) go?

 Problem: The home bucket for (35, g) is already occupied!

o This is a “collision”.

17

[0] [1] [2] [3] [4] [5] [6] [7]

(85,e)(22,a)(33,b)(3,c) (73,d)



Hash Function Design Criteria

 Must compute a bucket for every key in the universe.

 Must compute the same bucket for the same key.

 Should be easy and quick to compute.

 Minimizes collision

o Spread keys out evenly in hash table

o Gold standard: completely random hashing

➢ The probability that a randomly selected key has bucket 𝑖 as its home bucket 
is 1/𝑛, 0 ≤ 𝑖 < 𝑛.

➢ Completely random hashing minimizes the likelihood of a collision when keys 
are selected at random.

➢ However, completely random hashing is infeasible due to the need to 
remember the random bucket.

18

The hardest criterion



Hash Functions

 Hash function (ℎ(𝑘𝑒𝑦)) maps key to buckets in two steps:

1. Convert key into an integer in case the key is not an integer.

o A function 𝑡(𝑘𝑒𝑦) which returns an integer value, known as hash code.

2. Compression map: Map an integer (hash code) into a home bucket.

o A function 𝑐(ℎ𝑎𝑠ℎ𝑐𝑜𝑑𝑒) which gives an integer in the range [0, 𝑛 − 1], 
where 𝑛 is the number of buckets in the table.

 In summary, ℎ(𝑘𝑒𝑦) = 𝑐(𝑡(𝑘𝑒𝑦)), which gives an index in the table.

19

Hash function criteria: Should be easy and quick to compute.



Compression Map

 Map an integer (hash code) into a home bucket.

 The most common method is by modulo arithmetic.

homeBucket = c(hashcode) = hashcode % n

where 𝑛 is the number of buckets in the hash table.

 Example: Pairs are (22,a), (33,b), (3,c), (55,d), (79,e). Hash table size is 7.

20

[0] [1] [2] [3] [4] [5] [6]

(22,a) (33,b)(3,c) (55,d)(79,e)



Hashing by Modulo

 The choice of the hash table size 𝑛 will affect the distribution 
of home buckets.

 Suppose the keys of an application are more likely to be mapped into even 
integers.

o E.g., memory address is always a multiple of 4.

 When the hash table size 𝑛 is an even number, even integers are hashed 
into even home buckets.

o E.g., n = 14: 20%14 = 6, 32%14 = 4, 8%14 = 8

 So do not use an even hash table size 𝑛.

 Ideally, choose the hash table size 𝑛 as a large prime number.

21



Collision Resolution

 Separate Chaining

 Open Addressing

o Linear Probing

o Quadratic Probing and Double Hashing

o Performance of Open Addressing

22



Separate Chaining

 Each bucket keeps a linked list of all items whose home buckets are that bucket.

 Example: Put pairs whose keys are 6, 23, 34, 28, 29, 7, 33, 30 into a hash table with 

𝑛 = 7 buckets.

o homeBucket = key % 7

o Note: we insert object at the beginning of a linked list.

23

7 28

34 6

30 23

29

33

[0]

[1]

[2]

[3]

[4]

[5]

[6]



Separate Chaining

 Value find(Key key)

o Compute k = h(key)

o Search in the linked list located at the k-th bucket with the key

➢ Check every entry

 void insert(Key key, Value value)

o Compute k = h(key)

o Search in the linked list located at the k-th bucket 

➢ If found, update its value; 

➢ Otherwise, insert pair at the beginning of the linked list in O(1) time 24



Separate Chaining

 Value remove(Key key)

o Compute k = h(key)

o Search in the linked list located at the k-th bucket

➢ If found, remove that pair

25



Open Addressing

 Reuse empty space in the hash table to hold colliding items.

 Search hash table in systematic way for an empty bucket

o Idea: use a sequence of hash functions h0, h1, h2, . . . to probe the 

hash table until we find an empty slot.

➢ I.e., we probe the hash table buckets mapped by h0(key), 

h1(key), …, in sequence, until we find an empty slot.

➢ Generally, we could define hi(x) = h(x) + f(i)

26



Open Addressing Methods

 Linear probing:
hi(x) = (h(x) + i) % n

 Quadratic probing: 
hi(x) = (h(x) + i

2) % n

 Double hashing: 
hi(x) = (h(x) + i*g(x)) % n

27
n is the hash table size



Linear Probing

hi(key) = (h(key)+i) % n

 Apply hash function h0, h1, …, in sequence until we find an empty slot.

o This is equivalent to doing a linear search from h(key) until we find an 

empty slot.

 Example: Hash table size n = 9, h(key) = key%9

o Thus hi(key) = (key%9+i)%9

o Suppose we insert 1, 5, 11, 2, 17, 21, 31 in sequence

28[0] [1] [2] [3] [4] [5] [6] [7] [8]

1 511 How about 2?



Linear Probing
Example

 Hash table size n = 9, h(key) = key%9

o Thus hi(key) = (key%9+i)%9

o Suppose we insert 1, 5, 11, 2, 17, 21, 31 in sequence.

o h0(2) = 2. Not empty!

o So we try h1(2) = 3. It is empty, so we insert there!

o h0(21) = 3. Not empty!

o h1(21) = 4. It is empty, so we insert there!

o h0(31) = 4. Not empty!

o h1(31) = 5. Not empty!

o h2(31) = 6. It is empty, so we insert there!
29

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1 511 2 1721 31



Linear Probing
find()

o With linear probing hi(key) = (key%9+i)%9

o How will you search an item with key = 31?

o How will you search an item with key = 10?

 Procedure: probe in the buckets given by h0(key), h1(key), …, in sequence until 

o we find the key,

o or we find an empty slot, which means the key is not found.

30

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1 511 2 1721 31



Linear Probing
remove()

o With linear probing hi(key) = (key%9+i)%9

o How will you remove an item with key = 11?

o If we just find 11 and delete it, will this work?

31

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1 511 2 1721 31

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1 52 1721 31

What is the result for searching key = 2 

with the above hash table?



Linear Probing
remove()

 After deleting 11, we need to rehash the following “cluster” to fill the 

vacated bucket.

 However, we cannot move an item beyond its actual hash position. In this 

example, 5 cannot be moved ahead.

32

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1 52 1721 31

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1 52 1721 31

cluster



Linear Probing
Alternative implementation of remove()

 Lazy deletion: we mark deleted entry as “deleted”

o “deleted” is not the same as “empty”

o Now each bucket has three states: 

➢ “occupied”, “empty”, and “deleted”

 We can overwrite the “deleted” entry when inserting

 When we search, we will keep looking if we encounter a “deleted” entry

33

[0] [1] [2] [3] [4] [5] [6] [7] [8]

1 511 2 1721 31del



Quadratic Probing

hi(key) = (h(key)+i
2) % n

 It is less likely to form large clusters.

 Example: Hash table size n = 7, h(key) = key%7

o Thus hi(key) = (key%7+i
2)%7

o Suppose we insert 9, 16, 11, 2 in sequence.

o h0(16) = 2. Not empty!

o h1(16) = 3. It is empty, so we insert there.

o h0(2) = 2. Not empty!

o h1(2) = 3. Not empty!

o h2(2) = 6. It is empty, so we insert there.
34

[0] [1] [2] [3] [4] [5] [6]

9 16 11 2



Problem of Quadratic Probing

 However, may never find an empty slot even if the table isn’t full!

o Highly filled table

 Luckily, if the load factor 𝐿 ≤ 0.5, guaranteed to find an empty slot

o Table size must be a prime number!

o Definition: given a hash table with 𝑛 buckets that stores 𝑚 objects, 

its load factor is

𝐿 =
𝑚

𝑛
=

#objects in hash table

#buckets in hash table

35



More on Load Factor of Hash Table

 Question: which collision resolution strategy is feasible for load factor 

larger than 1?

o Answer: separate chaining.

o Note: for open addressing, we require 𝐿 ≤ 1.

 Claim: 𝐿 = 𝑂(1) is a necessary condition for operations to run in 

constant time.

36



More on Load Factor of Hash Table

 Question: A hash table of size 100 has 40 empty elements and 25 

deleted elements. What is its load factor?

 Answer: 0.35

 𝐿 =
100−40−25

100
=

35

100
= 0.35

37



Double Hashing

hi(x) = (h(x) + i*g(x)) % n

 Uses 2 distinct hash functions.

 Increment differently depending on the key.

o If h(x) = 13, g(x) = 17, the probe sequence is 13, 30, 47, 64, …

o If h(x) = 19, g(x) = 7, the probe sequence is 19, 26, 33, 40, …

o For linear and quadratic probing, the incremental probing patterns 

are the same for all the keys.

38



Double Hashing
Example

 Hash table size n = 7, h(key) = key%7, g(key) = (5-key)%5

o Thus hi(key) = (key%7+(5-key)%5*i)%7

o Suppose we insert 9, 16, 11, 2 in sequence.

o h0(16) = 2. Not empty!

o h1(16) = 6. It is empty, so we insert there.

o h0(2) = 2. Not empty!

o h1(2) = 5. It is empty, so we insert there.
39

[0] [1] [2] [3] [4] [5] [6]

9 1611 2



Expected Number of Comparisons

 Chaining (assume completely random hash)

o First check whether empty or not, count as 1 operation

o Average length is L in each bucket

➢ U(L) = 1+L

➢ S(L) = 1+L/2 (average search of filled bucket is half expected length)

40



Which Strategy to Use?

 Both separate chaining and open addressing are used in real applications

 Some basic guidelines:

o If resizing is frequent, better to use open addressing

o If need removing items, better to use separate chaining

➢ remove() is tricky in open addressing

o In mission critical application, prototype both and compare

41



Exercises

 Suppose you have a hash table of size M = 7 that uses the hash function H(n) = n 
and the compression function C(n) = n mod M. Quadratic probing is used to 
resolve collisions. You enter the following six elements into this hash table in the 
following order: {24, 11, 17, 21, 10, 4}. No resizing is done. After all collisions are 
resolved, which index of the hash table remains empty (the first index is 0)?

 Answer: 2

42

17 21 24 11 10 4

0 1 2 3 4 5 6



Exercises
 How many possbile inserting sequences for the hash table using quadratic 

probing with hash function ℎ𝑖 𝑥 = 𝑥 + 𝑖2 mod 7 would lead to a hash table 

like this?

 Answer: 9

43

0 1 2 3 4 5 6

3 9 2 4 11

9 2 4 11 3

3 11

4 2 11 3

3 11

11 2 3

4 9 2 11 3

3 11

11 2 3

11 9 2 3



Exercises

 https://leetcode.cn/problems/two-sum/

 https://leetcode.cn/problems/longest-consecutive-sequence/

44

https://leetcode.cn/problems/two-sum/
https://leetcode.cn/problems/longest-consecutive-sequence/

	幻灯片 1: ECE2810J Data Structures and Algorithms
	幻灯片 2: Outline
	幻灯片 3: Counting Sort A General Version
	幻灯片 4: Counting Sort Example (General, allows additional data in A)
	幻灯片 5: Bucket Sort
	幻灯片 6: Bucket Sort
	幻灯片 7: Radix Sort
	幻灯片 8: Radix Sort Example
	幻灯片 9: Radix Sort Example
	幻灯片 10: Radix Sort Example
	幻灯片 11: Radix Sort Time Complexity
	幻灯片 12: Radix Sort
	幻灯片 13: Randomized Selection
	幻灯片 14: Deterministic Selection Algorithm
	幻灯片 15: Deterministic Selection Algorithm
	幻灯片 16: Hashing
	幻灯片 17: What Can Go Wrong?
	幻灯片 18: Hash Function Design Criteria
	幻灯片 19: Hash Functions
	幻灯片 20: Compression Map
	幻灯片 21: Hashing by Modulo
	幻灯片 22: Collision Resolution
	幻灯片 23: Separate Chaining
	幻灯片 24: Separate Chaining
	幻灯片 25: Separate Chaining
	幻灯片 26: Open Addressing
	幻灯片 27: Open Addressing Methods
	幻灯片 28: Linear Probing
	幻灯片 29: Linear Probing Example
	幻灯片 30: Linear Probing find()
	幻灯片 31: Linear Probing remove()
	幻灯片 32: Linear Probing remove()
	幻灯片 33: Linear Probing Alternative implementation of remove()
	幻灯片 34: Quadratic Probing
	幻灯片 35: Problem of Quadratic Probing
	幻灯片 36: More on Load Factor of Hash Table
	幻灯片 37: More on Load Factor of Hash Table
	幻灯片 38: Double Hashing
	幻灯片 39: Double Hashing Example
	幻灯片 40: Expected Number of Comparisons
	幻灯片 41: Which Strategy to Use?
	幻灯片 42: Exercises
	幻灯片 43: Exercises
	幻灯片 44: Exercises

